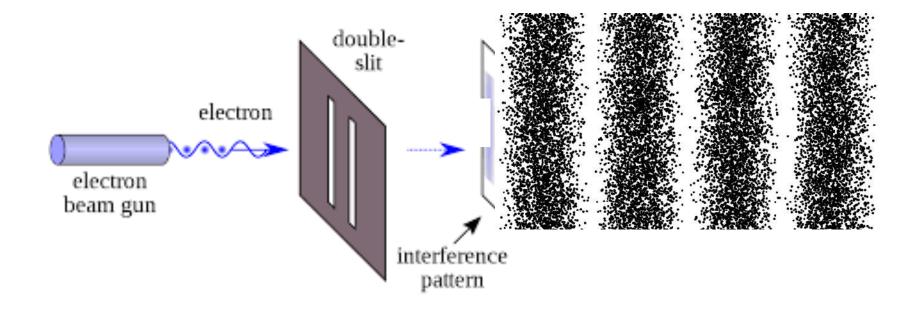
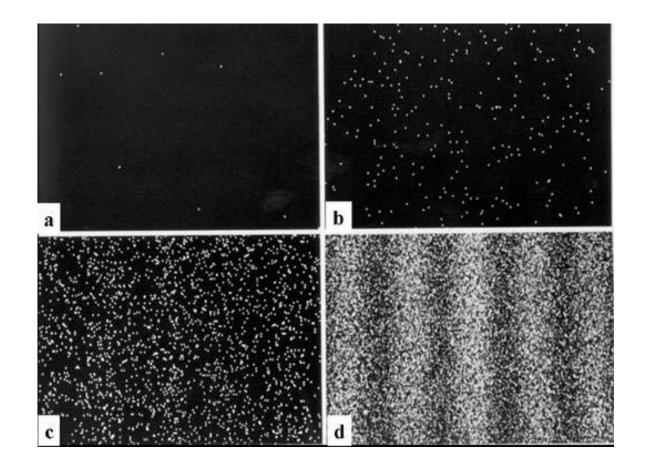

Supercondutividade: um fenômeno quântico macroscópico

Eduardo Miranda Física em Casa 05/11/2020

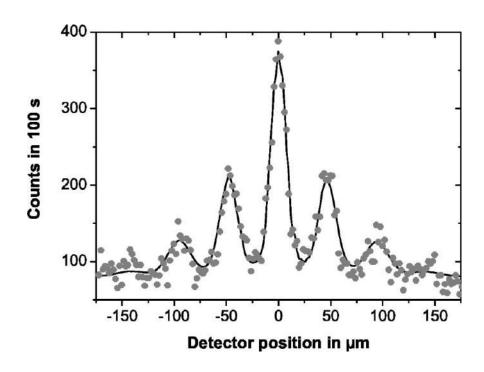

A mecânica quântica é muito estranha!

Partículas se comportam como ondas.



Superfície da água

Partículas se comportam como ondas.

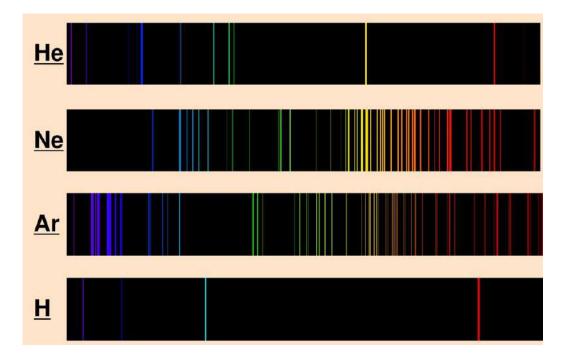

Partículas se comportam como ondas.

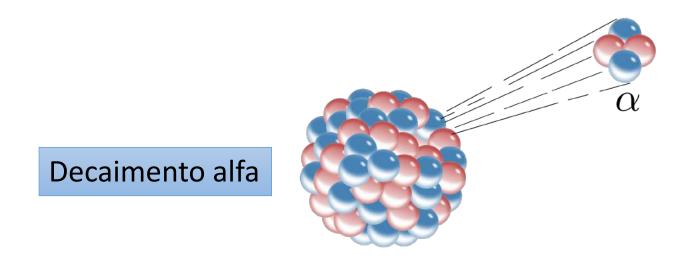


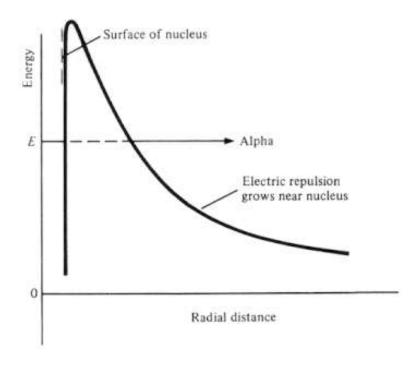
Elétrons

A. Tonomura *et al.*, Am. J. Phys. **57**, 117 (1989)

Partículas se comportam como ondas.




C₆₀: Bucky balls


• A energia é quantizada (pacotes finitos).

Luz emitida por átomos excitados

• Partículas podem tunelar: passar por uma "barreira".

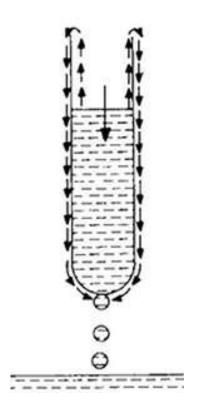
• Mas... só podemos observar esses fenômenos numa escala microscópica

$$mlv \sim h = 6,63 \times 10^{-34} \text{ kg m}^2/\text{s}$$

Constante de Planck

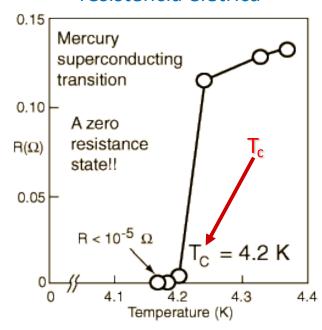
Max Planck Nobel 1918

Será que é possível observar fenômenos quânticos <u>macroscópicos</u>?


Superfluidez e supercondutividade

Superfluidez: Hélio abaixo de -271°C

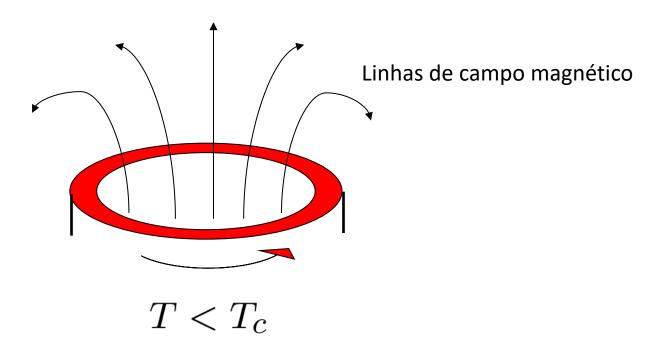
- Não se solidifica.
- 2. Flui por tubos finos sem atrito: superfluido.
- 3. Sobe pelas paredes do recipiente até esvaziá-lo.
- 4. Se esquentado por baixo, jorra espontaneamente de um recipiente.


Supercondutividade - Descoberta

Descoberta por Kamerlingh Onnes em 1911 em Hg, Sn, Pb (Prêmio Nobel de 1913)

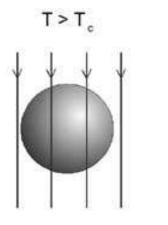
Onnes

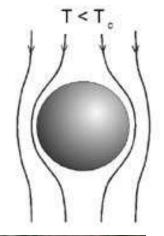
resistência elétrica



Abaixo de T_c, a corrente flui sem perdas!

$$R = 0$$

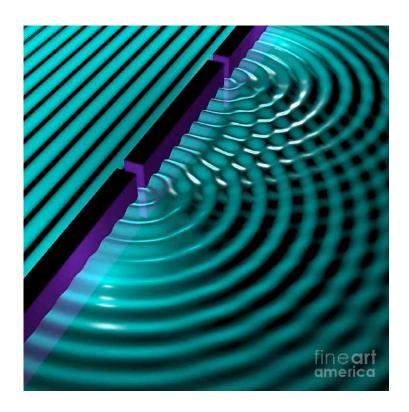

Anéis com correntes persistentes


Anéis supercondutores com correntes elétricas persistentes formam um estado metaestável que decai depois de um tempo cujo limite inferior medido é de 10⁵ anos! Acredita-se que o tempo de decaimento seja da ordem da idade do universo!

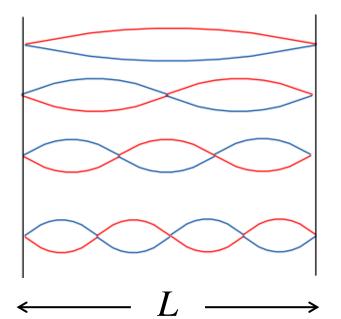
Efeito Meissner

Em 1933, Meissner e Ochsenfeld descobriram que o campo magnético é expulso do interior de um SC abaixo de T_c .

Efeito Meissner-Ochsenfeld



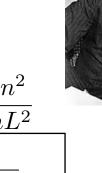
Princípio da "levitação" magnética ("Maglev")



1. Partículas sub-atômicas tem comportamento de ondas.



2. Como ondas, quando confinadas, oscilam apenas com determinados comprimentos de ondas.

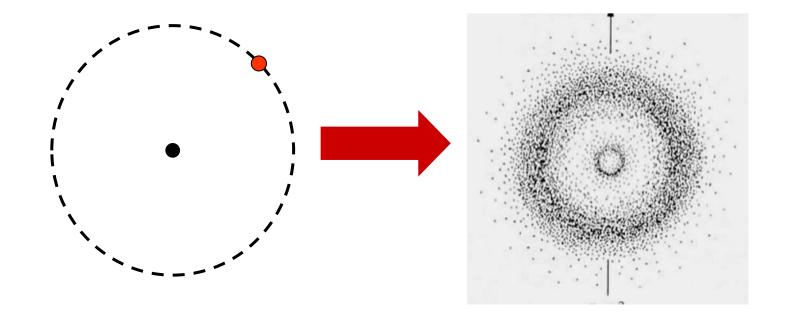

Ondas estacionárias numa corda

$$L = n \frac{\lambda}{2} \Rightarrow \lambda = \frac{2L}{n}$$
$$n = 1, 2, 3, \dots$$

L. de Broglie **Nobel 1929**

$$L = n\frac{\lambda}{2} \Rightarrow \lambda = \frac{2L}{n}$$

$$n = 1, 2, 3,$$


$$E = \frac{1}{2}mv^2 = \frac{h^2}{2m\lambda^2} = \frac{h^2n^2}{8mL^2}$$

$$E = \frac{h^2}{2m\lambda^2} = \frac{h^2n^2}{8mL^2}$$

$$E = \frac{h^2}{8mL^2}, 4\frac{h^2}{8mL^2}, 9\frac{h^2}{8mL^2},$$

Valores discretos de energia.

3. Ondas são objetos estendidos: as trajetórias das partículas são "borradas".

4. As partículas se tornam indistinguíveis!

Estatística de partículas clássicas (distinguíveis)

Duas partículas em 3 níveis de energia:

- 9 arranjos possíveis.
- 3 arranjos com duas partículas no mesmo nível.

Probabilidade de termos duas partículas no mesmo nível:

$$P_c = \frac{3}{9} = \frac{1}{3} \approx 0.33$$

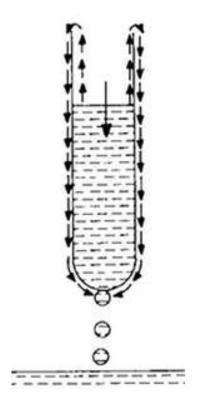
1	2	3
AB	-	-
-	AB	1
-	-	AB
Α	В	1
В	Α	ı
Α	-	В
В	-	Α
-	Α	В
-	В	Α

Estatística de partículas quânticas (indistinguíveis)

Duas partículas em 3 níveis de energia:

- 6 arranjos possíveis.
- 3 arranjos com duas partículas no mesmo nível.

Probabilidade de termos duas partículas no mesmo nível:


$$P_q = \frac{3}{6} = \frac{1}{2} = 0, 5 > P_c$$

1	2	3
AA	1	-
-	AA	-
-	1	AA
Α	Α	-
Α	-	Α
-	Α	Α

Partículas quânticas tendem a ficar <u>juntas</u> num mesmo nível! O efeito se torna ainda maior com mais partículas...

Superfluidez do Hélio

- Abaixo de -271°C, os átomo de Hélio se "condensam" num estado quântico único.
- Esse condensado macroscópico passa a se comportar quanticamente!
- Por ser um estado quântico único, não tem agitação térmica e não sofre atrito.

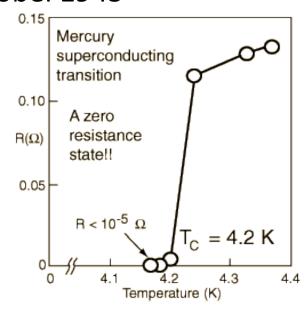
E a supercondutividade?

Os elétrons dos metais <u>não</u> são como o Hélio.

- Apesar de serem também quânticos e indistinguíveis, eles têm uma estatística diferente:
 - Não podem ocupar um mesmo estado quântico (Princípio de exclusão de Pauli): $P_{\rm el} = 0!$
- Mas um par de elétrons se comporta como um átomo de Hélio.
- Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os elétrons se grudam em pares e "condensam": estado supercondutor.

Wolfgang Pauli Nobel 1945

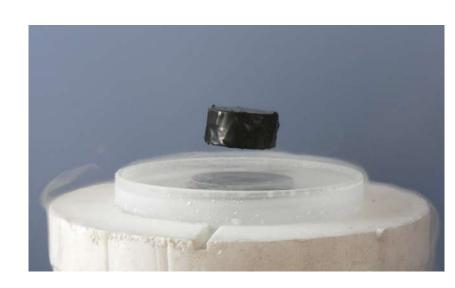
- 0 0 0 0
- 0 0 0 0
- 0 0 0 0
- 0 0 0 0


E a supercondutividade?

Os elétrons dos metais <u>não</u> são como o Hélio.

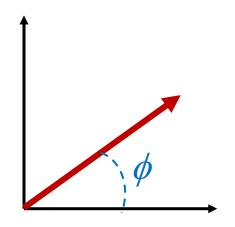
- Apesar de serem também quânticos e indistinguíveis, eles têm uma estatística diferente:
 - Não podem ocupar um mesmo estado quântico (Princípio de exclusão de Pauli): $P_{\rm el} = 0!$
- Mas um par de elétrons se comporta como um átomo de Hélio.
- Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os elétrons se grudam em pares e "condensam": estado supercondutor.
- Conduzem eletricidade sem resistência elétrica!

Wolfgang Pauli Nobel 1945


E a supercondutividade?

Os elétrons dos metais <u>não</u> são como o Hélio.

- Apesar de serem também quânticos e indistinguíveis, eles têm uma estatística diferente:
 - Não podem ocupar um mesmo estado quântico (Princípio de exclusão de Pauli): $P_{\rm el} = 0!$
- Mas um par de elétrons se comporta como um átomo de Hélio.
- Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os elétrons se grudam em pares e "condensam": estado supercondutor.
- Conduzem eletricidade sem resistência elétrica!
- Expulsam campos magnéticos.



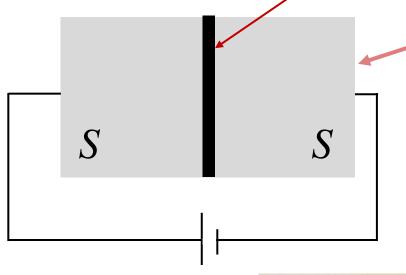
Wolfgang Pauli Nobel 1945

O estado quântico do condensado

A descrição quântica do condensado é feita por um vetor em 2D:

O comprimento do vetor tem a ver com a densidade de elétrons:

O variação do ângulo está ligado com a corrente elétrica:


$$I_s \propto \Delta \phi$$

 Para um supercondutor isolado e em equilíbrio, o ângulo não varia: não há nenhuma corrente elétrica.

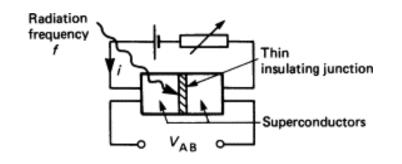
O que acontece se pusermos dois supercondutores em contato elétrico fraco?

Junção Josephson: h/2e

Fina camada isolante

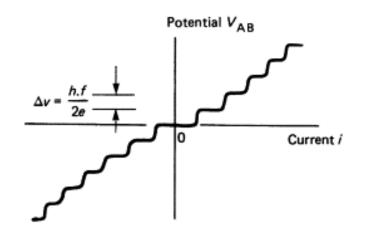
Brian Josephson (Nobel 1973)

Junção Josephson: sanduíche de dois supercondutores com um isolante fino no meio

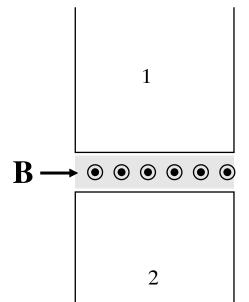

Efeito Josephson DC:

- Por causa do tunelamento quântico, pares de elétrons podem "passar" pelo isolante (se ele for fino).
- Se $\phi_1 \neq \phi_2$, existe uma corrente através da junção mesmo que não haja bateria:

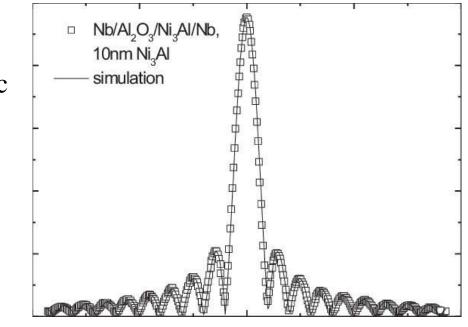
$$I_s \propto \phi_1 - \phi_2$$


- Note que a corrente é macroscópica: $\sim 10^{23}$ elétrons.
- Tunelamento macroscópico!

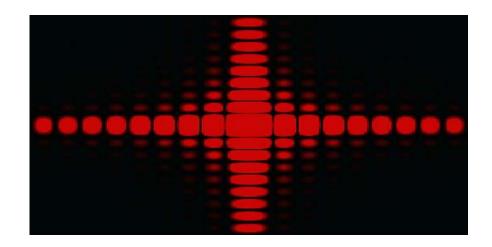
Efeito Josephson AC: h/2e

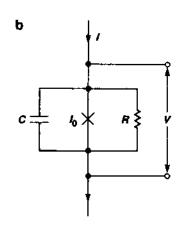

Se incidirmos radiação na junção com frequência f, aparecem degraus de voltagem como função da corrente:

$$V = n \frac{h}{2e} f, \quad n = 1, 2, 3 \dots$$



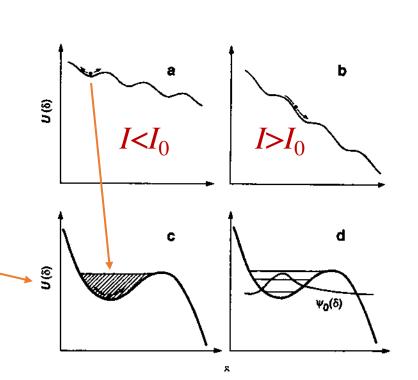
- Quantização macroscópica!
- Estabelece voltagens com uma precisão de <u>uma parte em 10¹⁰!</u>
- Note a presença de *h*!


Efeito Josephson: campo magnético


Se aplicarmos um campo magnético através da junção, a máxima corrente Josephson DC apresenta padrões de interferência como função do campo magnético aplicado: interferência macroscópica!

Difração da <u>luz</u> por uma fenda

Tunelamento quântico macroscópico

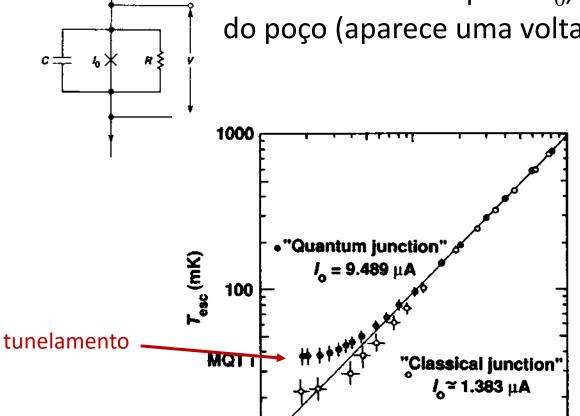


o ângulo fica

aprisionado

classicamente

O efeito Josephson DC só ocorre até uma corrente máxima I_0 (figura). Como função de I, a diferença de ângulo $\Delta \phi = \phi_1 - \phi_2$ da junção se comporta como na figura abaixo:



Mas quanticamente, ele pode tunelar através da barreira!

Tunelamento quântico macroscópico

1000

100

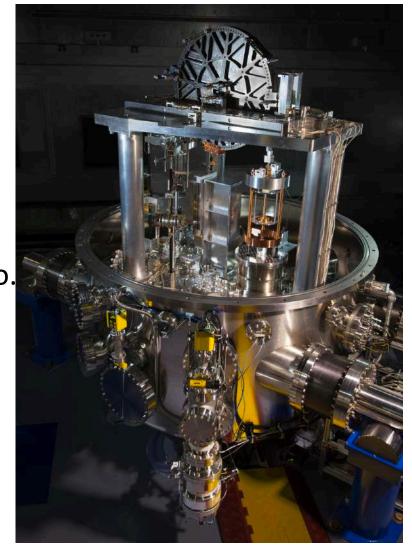
Aumentando I até perto I_0 , pode-se medir o valor de I quando há "escape" do poço (aparece uma voltagem no circuito): taxa de escape do poço

Em "altas" temperaturas, a voltagem escapa por flutuação térmica: o "ângulo" ganha energia e passa por cima da barreira

Mas em baixas temperaturas, isso não tem como acontecer. O "ângulo" tunela através da barreira: tunelamento macroscópico.

J. Clarke *et al.*, Science **239**, 992 (1988)**7 (mK)**

Balança de Kibble (ou Watt)


A força gravitacional sobre uma massa é contrabalançada por uma força de origem elétrica/magnética.

Padrão Josephson de voltagem é usado para alta precisão.

- Sabendo-se h, pode-se medir a massa com grande precisão.
- Ou pode-se <u>definir</u> h e usar como padrão de massa!

20 de maio de 2019

 $h = 6,62607015 \times 10^{-34} \text{ J.s}$

Balança de Kibble Nist-4

Obrigado