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A mecânica quântica é muito estranha!



Previsões “estranhas” da mecânica quântica

• Partículas se comportam como ondas.

Superfície da água
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A. Tonomura et al., Am. J. Phys. 57, 117 (1989)

Elétrons



Previsões “estranhas” da mecânica quântica

• Partículas se comportam como ondas.

M. Arndt et al., Nature 401, 680–682 (1999)in the United States by the architect Buckminster Fuller.31

This new modification of pure carbon was discovered in
1985 by Kroto et al.32 and shown to be particularly stable
and abundant when exactly 60 carbon atoms are arranged in
one molecule to form the smallest natural soccer ball we
know, the buckyball, as shown in Fig. 2.

Fullerenes are appealing candidates because a successful
quantum experiment with them would be regarded as an im-
portant step toward the realm of our macroscopic world:
Many of the known physical properties of buckyballs are
more closely related to a chunk of hot solid material than to
the cold atoms that have so far been used in matter wave
interference. The existence of collective many-particle states
like plasmons and excitons, the rich variety of vibrational
and rotational modes as well as the concept of an internal
molecular temperature are only some of the clear indicators
of the multiparticle composition of the fullerenes. And we
might wonder whether this internal complexity could spoil
the quantum wave behavior of the center of mass motion.

To answer this question, we have set up a new experiment
as shown in Fig. 3. It resembles very much the standard
Young’s double-slit experiment. Like its historical counter-
part, our setup also consists of four main parts: the source,
the collimation, the diffraction grating, and the detector.

A. The source

To bring the buckyballs into the gas phase, fullerene pow-
der is sublimated in a ceramic oven at a temperature of about
900 K. The vapor pressure is then sufficient to eject mol-
ecules, in a statistical sequence, one by one through a small
slit in the oven. The molecules have a most probable velocity
vmp of about 200 m/s and a nearly thermal velocity spread of
!v/vmp!60%. Here !v is the full width of the distribution
at half height.

To calculate the expected diffraction angles, we first need
to know the de Broglie wavelength which is uniquely deter-
mined by the momentum of the molecule

"!
h

mv
, #1$

where h is Planck’s constant. Accordingly, for a C60 fullerene
with a mass of m!1.2"10#24 kg and a velocity of v!200
m/s, we find a wavelength of "!2.8 pm.33

B. The diffractive element

Because the de Broglie wavelength is about five orders of
magnitude smaller than any realistic free-standing mechani-
cal structure, we expect the characteristic size of the interfer-
ence phenomena to be small. A sophisticated machinery is
therefore necessary to actually show them. As the diffracting
element we used a free-standing silicon nitride grating with a
nominal grating constant of d!100 nm, slit openings of s
!55$5 nm and thickness of only 200 nm along the beam
trajectory. These gratings are at the cutting edge of current
technology and only a few specialists worldwide can actually
make them.34

We can now calculate the deflection angle to the first dif-
fraction order in the small angle approximation as the ratio
of the wavelength and the grating constant,

%!
"

d !
2.8"10#12 m

10#7 m
!28 &rad. #2$

In elementary textbooks Eq. #2$ is usually derived using Fig.
4 and noting that the first constructive interference occurs
when the difference between two neighboring paths is equal
to one de Broglie wavelength. Because our detector is placed
at 1.2 m downstream from the grating, the separation be-
tween the interference peaks at the detector amounts then to
only L"%!1.2 m"28 &rad!34 &m.

Fig. 2. The fullerene molecule C60 , consisting of 60 carbon atoms arranged
in a truncated icosahedral shape, is the smallest known natural soccer ball.

Fig. 3. Setup of the diffraction experiment. Fullerene
molecules are sublimated in the oven at 900 K. The
spectral coherence can be improved using a mechanical
velocity selector. Two collimating slits improve the spa-
tial coherence and limit the angular spread of the beam
to smaller than the expected diffraction angle. A SiN
grating with a 100 nm period and 50 nm openings is
used to diffract the incident molecular waves. The mo-
lecular far-field distribution is observed using a scan-
ning laser-ionization detector.

Fig. 4. Textbook approach to double-slit diffraction. First-order interference
maxima of a monochromatic wave are caused by constructive interference
of the wavelets that emerge from two neighboring slits. The corresponding
path length difference between the two paths is equal to the de Broglie
wavelength. Higher order interference will be spoiled by the limited longi-
tudinal coherence in a thermal source. Velocity selection in our experiments
increases the longitudinal coherence length by more than a factor of 3 and
therefore permits the observation of higher order interference fringes.
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C60: Bucky balls

improvement of the spectral purity using a velocity filter !see
Figs. 3 and 5", thereby also improving the wavelength distri-
bution.

Figure 6 shows a typical fullerene diffraction pattern with
a thermal beam. We can clearly discern the first interference
orders on both sides of the central peak. But the limited
coherence is reflected by the fact that we cannot see any
second or higher order peaks in the interferogram of Fig. 6.

To see more fringes we have to increase the coherence
length and therefore decrease the velocity spread. For this
purpose we have employed a mechanical velocity selector, as
shown after the oven in Fig. 3. It consists of four slotted
disks that rotate around a common axis. The first disk chops
the fullerene beam and only those molecules are transmitted
that traverse the distance from one disk to the next in the
same time that the disks rotate from one open slot to the
next. Although two disks would suffice for this purpose, the
additional disks decrease the velocity spread even further and
help eliminate velocity sidebands. By varying the rotation
frequency of the selector, the desired velocity class of the
transmitted molecules can be adjusted. To measure the time
of flight distribution we chopped the fullerene beam with the

chopper right behind the source !see Fig. 3". The selection is
of course accompanied by a significant loss in count rate, but
we can still retain about 7% of the unselected molecules.

In Fig. 5 both the thermal and the selected velocity distri-
butions are shown. In contrast to the width of the thermal
spectrum, amounting to #v/v!60%, we are able to reduce
this number to only 17% with the selector. The increase in
longitudinal coherence by a factor of more than 3 allows for
the observation of diffraction peaks up to at least the second
and possibly the third order, as can be seen in Fig. 7.

It should also be pointed out that by using the velocity
selector, we can now choose a slow mean velocity centered
about 120 m/s, which corresponds to a de Broglie wave-
length of 4.6 pm. It is obvious that this increase in wave-
length results in a wider separation of the diffraction peaks,
which can be seen by comparing Figs. 6 and 7.

In principle, the diffraction patterns can be understood
quantitatively within the Fraunhofer approximation of Kirch-
hoff’s diffraction theory as it can be found in any optics
textbook.38 However, Fraunhofer’s diffraction theory in the
context of optics misses an important point that becomes
evident in our experiments with matter waves and material
gratings: the attractive interaction between molecule and
wall results in an additional phase of the molecular wave
function after the passage of the molecule through the slits.39

Although the details of the calculations are somewhat
involved,40 it suffices here to say that the qualitative effect of
this attractive force can be understood as a narrowing of the
real slit width toward an effective slit width. For our fullerene
molecules the reduction can be as big as 20 nm for the un-
selected molecular beam and almost 30 nm for the velocity
selected beam. The stronger effect on slower molecules can
be understood by the longer and therefore more influential
interaction between the molecules and the wall. However, a
complete description would need to take into account the
correct shape of the complex !imaginary and real" transmis-
sion function, which implies the position-dependent modula-
tion of both the molecular amplitude and phase.

The full lines in Figs. 6 and 7 are fits of our data to this
modified Kirchhoff–Fresnel theory. To obtain such a good fit
we also have to take into account an enhanced contribution
in the zeroth order which we attribute to mechanical defects
!holes" of the grating which are significantly larger than the
grating period.

III. CONCLUDING REMARKS

A. Single particle interferometry

It is important to note that the interference pattern is built
up from single, separate particles. There is no interference
between two or more particles during their evolution in the
apparatus. Single particle interference is evidenced in our
case by two independent arguments.

The first argument is based on the spatial separation be-
tween the molecules. The molecular flux at an average speed
of 200 m/s is $3"109 cm#2 s#1 at the plane of the detec-
tor. This flux corresponds to an average molecular density of
1.7"1011 m#3 or an average molecular distance of 200 %m.
This is three orders of magnitude wider than any realistic
range of molecular !van der Waals" forces, which are typi-
cally confined to several 100 nm.

The second argument is based on the fact that interference
occurs only between indistinguishable states. However, all
molecules may be regarded as being in different states. There

Fig. 6. Far-field diffraction of C60 using a thermal beam of v̄!200 m/s with
a velocity spread of #v/v$60%. The absence of higher order interference
fringes is due to the poor spectral coherence.

Fig. 7. Far-field diffraction of C60 using the slotted disk velocity selector.
The mean velocity was v̄!117 m/s, and the width was #v/v$17%. Full
circles represent the experimental data. The full line is a numerical model
based on Kirchhoff–Fresnel diffraction theory. The van der Waals interac-
tion between the molecule and the grating wall is taken into account in form
of a reduced slit width. Grating defects !holes" additionally contribute to the
zeroth order.
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Previsões “estranhas” da mecânica quântica

• A energia é quantizada (pacotes finitos).
Luz emitida por átomos excitados



Previsões “estranhas” da mecânica quântica

• Partículas podem tunelar: passar por uma “barreira”.

Decaimento alfa



Previsões “estranhas” da mecânica quântica

• Mas… só podemos observar esses fenômenos numa escala microscópica

mlv ⇠ h = 6, 63⇥ 10�34 kg m2/s

1

Será que é possível observar fenômenos 
quânticos macroscópicos?

Constante de Planck
Max Planck
Nobel 1918



Superfluidez e supercondutividade



Superfluidez: Hélio abaixo de -271oC
1. Não se solidifica.
2. Flui por tubos finos sem atrito: superfluido.
3. Sobe pelas paredes do recipiente até esvaziá-lo.
4. Se esquentado por baixo, jorra espontaneamente de um recipiente.



Supercondutividade - Descoberta

Descoberta por Kamerlingh Onnes em 1911 em Hg, Sn, Pb
(Prêmio Nobel de 1913)

Onnes

Tc

resistência elétrica

Abaixo de Tc, a corrente flui sem perdas!

0=R



Anéis com correntes persistentes

Anéis supercondutores com correntes elétricas persistentes formam um estado 
metaestável que decai depois de um tempo cujo limite inferior medido é de 105 anos! 
Acredita-se que o tempo de decaimento seja da ordem da idade do universo!

Linhas de campo magnético



Efeito Meissner

Em 1933, Meissner e Ochsenfeld descobriram que o campo magnético é expulso 
do interior de um SC abaixo de Tc.

Efeito Meissner-Ochsenfeld

Princípio da “levitação” magnética (“Maglev”)



Mecânica Quântica:
1. Partículas sub-atômicas tem comportamento de ondas.



Mecânica Quântica:
2. Como ondas, quando confinadas, oscilam apenas 

com determinados comprimentos de ondas.

• Valores discretos de energia.

Ondas estacionárias numa corda
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Mecânica Quântica:
3. Ondas são objetos estendidos: as trajetórias das partículas são “borradas”.



Mecânica Quântica:
4. As partículas se tornam indistinguíveis!



Estatística de partículas clássicas (distinguíveis)

1 2 3

AB - -

- AB -

- - AB

A B -

B A -
A - B

B - A

- A B

- B A

Duas partículas em 3 níveis de energia:
• 9 arranjos possíveis.
• 3 arranjos com duas partículas no mesmo nível.

Probabilidade de termos duas partículas no mesmo nível:
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Estatística de partículas quânticas (indistinguíveis)
Duas partículas em 3 níveis de energia:
• 6 arranjos possíveis.
• 3 arranjos com duas partículas no mesmo nível.

Probabilidade de termos duas partículas no mesmo nível:

1 2 3

AA - -

- AA -

- - AA

A A -

A - A

- A A

Partículas quânticas tendem a ficar juntas num mesmo nível!
O efeito se torna ainda maior com mais partículas...
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Superfluidez do Hélio
• Abaixo de -271oC, os átomo de Hélio se “condensam” num estado quântico único.
• Esse condensado macroscópico passa a se comportar quanticamente!
• Por ser um estado quântico único, não tem agitação térmica e não sofre atrito.



E a supercondutividade?

Os elétrons dos metais não são como o Hélio.
• Apesar de serem também quânticos e indistinguíveis, eles têm 

uma estatística diferente:
• Não podem ocupar um mesmo estado quântico (Princípio de 

exclusão de Pauli): Pel = 0!
• Mas um par de elétrons se comporta como um átomo de Hélio.
• Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os 

elétrons se grudam em pares e “condensam”: estado 
supercondutor.

Wolfgang Pauli
Nobel 1945
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• Não podem ocupar um mesmo estado quântico (Princípio de 

exclusão de Pauli): Pel = 0!
• Mas um par de elétrons se comporta como um átomo de Hélio.
• Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os 

elétrons se grudam em pares e “condensam”: estado 
supercondutor.

• Conduzem eletricidade sem resistência elétrica!

Wolfgang Pauli
Nobel 1945



E a supercondutividade?

Os elétrons dos metais não são como o Hélio.
• Apesar de serem também quânticos e indistinguíveis, eles têm 

uma estatística diferente:
• Não podem ocupar um mesmo estado quântico (Princípio de 

exclusão de Pauli): Pel = 0!
• Mas um par de elétrons se comporta como um átomo de Hélio.
• Em baixas temperaturas e em alguns metais (Pb,Al,Hg), os 

elétrons se grudam em pares e “condensam”: estado 
supercondutor.

• Conduzem eletricidade sem resistência elétrica!
• Expulsam campos magnéticos.

Wolfgang Pauli
Nobel 1945



O estado quântico do condensado
A descrição quântica do condensado é feita por um vetor em 2D:

• O comprimento do vetor tem a ver com a densidade de 
elétrons:

• O variação do ângulo está ligado com a corrente elétrica:

• Para um supercondutor isolado e em equilíbrio, o ângulo 
não varia: não há nenhuma corrente elétrica.
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O que acontece se pusermos dois supercondutores em contato elétrico fraco?

mlv ⇠ h = 6, 63⇥ 10�34 kg m2/s

v =
h

m�

E =
1

2
mv2 =

h2

2m�2
=

h2n2

8mL2

E =
h2

8mL2
, 4

h2

8mL2
, 9

h2

8mL2
, . . .

r
Ns

V
⇠

r
1023

1cm3

Is / ��

Is / �1 � �2

1



Junção Josephson: h/2e

Brian Josephson
(Nobel 1973)

f1 f2

Efeito Josephson DC:
• Por causa do tunelamento quântico, pares de elétrons 

podem “passar” pelo isolante (se ele for fino).
• Se f1 ≠ f2, existe uma corrente através da junção mesmo

que não haja bateria:

• Note que a corrente é macroscópica: ∼1023 elétrons.
• Tunelamento macroscópico!

S S

Fina camada isolante
Junção Josephson: sanduíche de dois supercondutores
com um isolante fino no meio
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Efeito Josephson AC: h/2e

Se incidirmos radiação na junção com frequência f, aparecem 
degraus de voltagem como função da corrente: 

• Quantização macroscópica!
• Estabelece voltagens com uma precisão de uma parte em 1010!
• Note a presença de h!
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Efeito Josephson: campo magnético
Se aplicarmos um campo magnético através da junção, a máxima 
corrente Josephson DC apresenta padrões de interferência como 
função do campo magnético aplicado: interferência macroscópica!
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Figure 1:

If we take the real parts and use ṅ1 = °ṅ2 we get

ṅ1

2
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ṅ1 = 2Æ
p

n1n2 sin(¡2 ° ¡1), (10)

Note I’ve put V=A=1. Then the current is just j = 2eṅ1. If we take the imaginary parts
we have

p
n1¡̇1 = °E1

p
n1 ° Æ

p
n2 cos(¡2 ° ¡1) (11)

p
n2¡̇2 = °E2

p
n2 ° Æ

p
n1 cos(¡1 ° ¡2), (12)

and by subtracting and assuming n1 ' n2 (let’s couple 2 identical superconductors at first)
we get

¡̇1 ° ¡̇2 = E2 ° E1 = 2e(V1 ° V2) (13)

where for the second equality we used the fact that the potential diÆerence between the
superconductors shifts the pair energies by °2eV . So we see that a finite voltage diÆerence
leads to a time changing phase diÆerence ¢¡ which means an AC current via Eq. (10).

Magnetic fields. Now put a flux through the junction where the B field is along the
°ŷ direction and A = °Bxẑ. The phase of the wave function ™ must change by

¡ ! ¡ ° 2e

c

Z
dS · A (14)

for the theory to be gauge invariant. Notice that ¡ is now space–dependent. So the Josephson

3

B

Ic

BF. Born et al., Phys. Rev. B 74, 140501 (2006)

Difração da luz por uma fenda



Tunelamento quântico macroscópico
Fig. 1. (a) Schematic a
representation and (b)
circuit description of
Josephson tunnel junc-
tion.

b

cI

T is the temperature of the system, and (ii) R >> Zo. To give a
numerical example, we assume that we are willing to cool our system
to 10 mK, and that the leads coupled to the junction have a
characteristic impedance Zc of 50 ohms. To ensure the oscillator is
comfortably in the quantum limit we impose the constraints
wo > lOkBT/i and Zc > 10 Zo, and find wo/21r > 2 GHz, L < 350
pH, and C < 15 pF. Thus, for this system one can hope to challenge
the smallness of h.
Even though we have been rather conservative in our constraints,

we see that the required components are "off the shelf." Thus, it
seems straightforward to construct a macroscopic oscillator exhibit-
ing quantum behavior. Unfortunately, it is not nearly so straightfor-
ward to demonstrate that the oscillator is behaving quantum
mechanically. For example, transitions between adjacent energy
levels would always involve quanta of frequency wo, which is of
course precisely the frequency one observes classically: the simple
harmonic oscillator is in the correspondence limit (2) for all
quantum numbers. Alternatively, one could attempt to observe the
zero-point motion ofthe ground state, a clear signature ofquantum
behavior. This is, however, an extremely difficult experiment requir-
ing a quantum-limited amplifier.

Fortunately, one can "evade the correspondence limit" by using a
Josephson tunnel junction (3). The macroscopic degree offreedom
is the difference 8 between the phases of the condensates of Cooper
pairs in the superconductors on either side of the tunnel barrier. As
we shall see later, in the classical limit the junction behaves as a
nonlinear inductor shunted by a capacitor. The anharmonicity ofthe
oscillator resulting from the nonlinearity has two important conse-
quences enabling us to observe the quantum behavior of a macro-
scopic variable. First, one can demonstrate the existence of a wave
packet associated with 8 by observing the decay ofthe ground state
by "macroscopic quantum tunneling." Second, the separation of
adjacent energy levels decreases with increasing quantum number so
that one can demonstrate energy quantization spectroscopically.

Dynamics of a Josephson Junction
A Josephson tunnel junction (Fig. la) consists of two supercon-

ductors separated by a thin insulating barrier (3). Cooper pairs, that
is, electrons of equal and opposite momenta and having paired
spins, can tunnel through the barrier with no voltage drop; this flow
of pairs constitutes a supercurrent. One can pass a static supercur-
rent through the junction up to a maximum value Io, known as the
critical current. The junction (Fig. lb) has a self-capacitance C and is
shunted by a resistance R that often arises from external circuitry, as
we shall see later. When the external current I is increased from zero
the phase difference across the junction is given by the Josephson
current-phase relation I = Iosinb; when I exceeds Io, a voltage is
developed across the junction and 8 evolves with time according to
the Josephson voltage-frequency relation t = 2rV/AFo, where
¢0 = hW2e is the flux quantum. If we set the sum of the current
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flowing through the three elements of the junction in Fig. lb equal
to I and eliminate terms in V in favor oft, we arrive at the following
dassical equation of motion for the phase difference:

(02) R (Do2 U(b) j)(Do (1)

The term IN(t) represents the Nyquist current noise generated by
the resistor R at temperature T, and (3)

U(b) = - (Io4ko2ir)[cos8 + (I/Io)5] (2)

One achieves great insight into the dynamics of the junction by
realizing that Eq. 1 is identical to the dassical equation ofmotion of
the coordinate 8 of a particle with mass C((IO/2ir)2 moving in the
tilted washboard potential U(8) shown in Fig. 2. The average slope
of the washboard is proportional to -I/Io. For I < Io the potential
has relative minima, and the particle can be trapped in one of them
(Fig. 2a). However, although the average value (8) and hence the
time-averaged voltage V across the junction are zero in this state, it
is important to realize that the particle is not stationary, but rather
that it oscillates at the bottom of the well at the so-called plasma
frequency (3)

(p = (2rTIo/koC)"2[1 - (I/Io)2]1/4 (3)
If we increase the bias current, eventually the particle will escape
from the well and propagate down the washboard (Fig. 2b); in this
state both 8 and V are nonzero.
The exact correspondence between the motion of the particle and

the dynamics of 8 is very useful, since it provides a heuristic model
with which one can understand the dynamics ofthe junction. As it is
more straightforward to discuss the behavior of this fictitious
partide than the motion of 8, we shall do so freely in the remainder
of this article, which is concerned with the processes by which the
partide escapes from the well (that is, the junction makes a
transition from the zero-voltage state to the nonzero-voltage state).
To aid this discussion, in Fig. 2, c and d, we show a single potential
well. In the experiments to be described I is very close to Io and the
potential is of the form AB2 - BB3 (A, B > 0). In this approxima-
tion the barrier height is (4)

AU = [2(2)1/2Io4Do/3ir](I - I/1o)3/2 (4)
The damping of the oscillations by the resistance R (assumed to be
linear) is represented by

Q=wpRC (5)
In this classical description, the particle can escape from the well

as a result of thermal activation: the fluctuating thermal energy of
the particle eventually exceeds AU and the particle escapes over the
top ofthe barrier. The escape rate for thermal activation is given by
the Kramers' result (5)

Ft(T) = at(wp/2'n)exp(-AU/kBT) (6)

where the prefactor at is of order unity (6). The thermal energy of
the particle arises from the noise current IN(t).

In thermal activation, the system is entirely classical and is
described by a dassical equation of motion representing a point
partide with a continuous range of energy (Fig. 2c). The phase
difference 8 is a classical variable. Ifwe lower the temperature, Eq. 1
is no longer valid since the dynamics of the particle must be
described quantum mechanically. The crossover from the dassical to
the quantum mechanical description occurs at a temperature (7)
T, = hW/27rkB (for Q >> 1). Below this temperature, the phase
difference 8 must be represented by a quantum mechanical operator,
rather than treated as a dassical variable. The position ofthe particle
is now described by a wave packet, *(b), and the energy of the
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O efeito Josephson DC só ocorre até uma corrente máxima I0 (figura). 
Como função de I, a diferença de ângulo Df = f1 - f2 da junção se 
comporta como na figura abaixo:

Fig. 2. Tilted wash-
board analog of Jo-
sephson tunnel junc-
tion: (a) stationary
state (V =O) for
I<1Io, and (b) run-
ning state (V # 0) for
I > Io. In the station-
ary state in the classical
regime (c) the particle
is point-like with a
continuous energy
range, whereas in (d)
the ground state I0(8)
of the partick is de-
scribed by a wave
packet and the energy
is quantized into levels.

particle can assume only discrete values corresponding to eigenstates
of the system (Fig. 2d). The leakage of 4(8) under the barrier
enables the particle to escape from the well by macroscopic quantum
tunneling (MQT) through the barrier (1, 8, 9).
We now emphasize the distinction between Josephson tunneling

and macroscopic quantum tunneling. In Josephson tunneling the
passage of each Cooper pair is controlled by the difference 8 in the
phase ofthe pair across the barrier. Since the condensate in any piece
of superconductor is characterized by a single phase, the phase
difference 8 for all pairs must be the same. Thus, 8 is "macroscopic"
in the sense that it is the single variable that completely specifies the
state ofthe junction, that is, of all the Cooper pairs. In the process of
macroscopic quantum tunneling it is the particle associated with the
phase difference 8 that tunnels as opposed to the tunneling of
individual Cooper pairs that occurs in Josephson tunneling. Thus,
the demonstration that MQT takes place implies that 8 is a quantum
variable, that is, that one must represent it by a wave packet. By
contrast, although 8 represents the phase difference between two
macroscopic quantum states, in the majority of experiments on
Josephson tunneling it is nonetheless a classical variable, describable
by purely dassical equations.
The first calculation of the tunneling rate was made by Ivan-

chenko and Zil'berman (8) for a junction at T = 0 with no
dissipation. A major step forward was made by Caldeira and Leggett
(9) who calculated the reduction in the tunneling rate when a linear
damping resistor was connected across the junction. To first order in
1/Q at T = 0 they predicted the escape rate to be

Fq(O) = (20f )] 2 exp[- 7.2 ( )

(7)
The reduction of Fq(O) by dissipation arises from a narrowing ofthe
wave packet. In the limit Q --+ 0, Fq(O) reduces to the Wentzel-
Kramer-Brillouin (WKB) result (2) obtained by Ivanchenko and
Zil'berman (8). Subsequently, many other theoretical papers have
appeared; the reviews listed in (10) give a comprehensive summary.
The theory has been extended to nonzero temperatures (7, 11-16):
when T - Tcr, both MQT and thermal activation contribute to the
escape process. There is also a large body of literature (10) con-
cerned with a related system, namely, a superconducting loop
interrupted by a single Josephson junction, which exhibits similar
behavior to that described above.

Detailed measurements of thermal escape in the classical regime
T >» Tcr were made by Jackel et al. (17) and Fulton and Dunkle-
berger (4) on a junction in a superconducting loop and on a current-
biased junction, respectively. The first attempts to measure MQT

were made by Ouboter and co-workers (18), Voss and Webb (19),
and Jackel et al. (20). The results ofthese experiments and of several
others (21-23) agreed qualitatively with theory in that the escape
rate tended to become constant as the temperature was lowered and
tended to be reduced as the dissipation was increased. In these
experiments, a persistent difficulty has been the lack ofknowledge of
the junction parameters in the relevant microwave frequency range.
However, Schwartz et al. (24) performed experiments on a loop
containing a junction shunted with an external resistor and made
separate measurements of the relevant parameters. In the over-
damped limit (Q << 1) of their experiment, a recent reanalysis of
their results shows them to be in quite good agreement with theory
(25).

In the present work, we used classical phenomena to measure the
parameters Io, C, and R in situ, so that we are able to compare
experiment and theory in the quantum regime with no adjustable
parameters (26). A further important consideration is the elimina-
tion of spurious noise from the junction. We address both issues in
the next two sections.

Experimnental Details
We deposited tunnel junctions on 10 by 10 mm2 oxidized silicon

chips using standard photolithographic processing. The base elec-
trode consisted of a niobium film typically 10 p.m wide and 0.2 ,um
thick; after oxidizing the film we deposited a PbIn counterelectrode
at right angles to it. The junction was attached to a mount in thermal
contact with the mixing chamber ofa dilution refrigerator capable of
reaching about 20 mK (Fig. 3).
A series of low-pass filters eliminated thermal noise from the

measuring apparatus and spurious signals such as those from radio
stations, while allowing us to interrogate the junction at low
frequencies. These filters were of two kinds: radio-frequency filters
consisting ofresistors or inductors and capacitors, and custom-made
microwave filters. The microwave filters consisted of a spiral of
insulated wire inside a copper tube filled with copper powder with a
grain size of about 30 ,um. Since each grain is insulated from its

Trgger v
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Fig. 3. Schematic drawing of apparatus.
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I<I0 I>I0

o ângulo fica 
aprisionado 
classicamente

Mas quanticamente, ele pode 
tunelar através da barreira!



Tunelamento quântico macroscópico
Fig. 1. (a) Schematic a
representation and (b)
circuit description of
Josephson tunnel junc-
tion.

b

cI

T is the temperature of the system, and (ii) R >> Zo. To give a
numerical example, we assume that we are willing to cool our system
to 10 mK, and that the leads coupled to the junction have a
characteristic impedance Zc of 50 ohms. To ensure the oscillator is
comfortably in the quantum limit we impose the constraints
wo > lOkBT/i and Zc > 10 Zo, and find wo/21r > 2 GHz, L < 350
pH, and C < 15 pF. Thus, for this system one can hope to challenge
the smallness of h.
Even though we have been rather conservative in our constraints,

we see that the required components are "off the shelf." Thus, it
seems straightforward to construct a macroscopic oscillator exhibit-
ing quantum behavior. Unfortunately, it is not nearly so straightfor-
ward to demonstrate that the oscillator is behaving quantum
mechanically. For example, transitions between adjacent energy
levels would always involve quanta of frequency wo, which is of
course precisely the frequency one observes classically: the simple
harmonic oscillator is in the correspondence limit (2) for all
quantum numbers. Alternatively, one could attempt to observe the
zero-point motion ofthe ground state, a clear signature ofquantum
behavior. This is, however, an extremely difficult experiment requir-
ing a quantum-limited amplifier.

Fortunately, one can "evade the correspondence limit" by using a
Josephson tunnel junction (3). The macroscopic degree offreedom
is the difference 8 between the phases of the condensates of Cooper
pairs in the superconductors on either side of the tunnel barrier. As
we shall see later, in the classical limit the junction behaves as a
nonlinear inductor shunted by a capacitor. The anharmonicity ofthe
oscillator resulting from the nonlinearity has two important conse-
quences enabling us to observe the quantum behavior of a macro-
scopic variable. First, one can demonstrate the existence of a wave
packet associated with 8 by observing the decay ofthe ground state
by "macroscopic quantum tunneling." Second, the separation of
adjacent energy levels decreases with increasing quantum number so
that one can demonstrate energy quantization spectroscopically.

Dynamics of a Josephson Junction
A Josephson tunnel junction (Fig. la) consists of two supercon-

ductors separated by a thin insulating barrier (3). Cooper pairs, that
is, electrons of equal and opposite momenta and having paired
spins, can tunnel through the barrier with no voltage drop; this flow
of pairs constitutes a supercurrent. One can pass a static supercur-
rent through the junction up to a maximum value Io, known as the
critical current. The junction (Fig. lb) has a self-capacitance C and is
shunted by a resistance R that often arises from external circuitry, as
we shall see later. When the external current I is increased from zero
the phase difference across the junction is given by the Josephson
current-phase relation I = Iosinb; when I exceeds Io, a voltage is
developed across the junction and 8 evolves with time according to
the Josephson voltage-frequency relation t = 2rV/AFo, where
¢0 = hW2e is the flux quantum. If we set the sum of the current
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flowing through the three elements of the junction in Fig. lb equal
to I and eliminate terms in V in favor oft, we arrive at the following
dassical equation of motion for the phase difference:

(02) R (Do2 U(b) j)(Do (1)

The term IN(t) represents the Nyquist current noise generated by
the resistor R at temperature T, and (3)

U(b) = - (Io4ko2ir)[cos8 + (I/Io)5] (2)

One achieves great insight into the dynamics of the junction by
realizing that Eq. 1 is identical to the dassical equation ofmotion of
the coordinate 8 of a particle with mass C((IO/2ir)2 moving in the
tilted washboard potential U(8) shown in Fig. 2. The average slope
of the washboard is proportional to -I/Io. For I < Io the potential
has relative minima, and the particle can be trapped in one of them
(Fig. 2a). However, although the average value (8) and hence the
time-averaged voltage V across the junction are zero in this state, it
is important to realize that the particle is not stationary, but rather
that it oscillates at the bottom of the well at the so-called plasma
frequency (3)

(p = (2rTIo/koC)"2[1 - (I/Io)2]1/4 (3)
If we increase the bias current, eventually the particle will escape
from the well and propagate down the washboard (Fig. 2b); in this
state both 8 and V are nonzero.
The exact correspondence between the motion of the particle and

the dynamics of 8 is very useful, since it provides a heuristic model
with which one can understand the dynamics ofthe junction. As it is
more straightforward to discuss the behavior of this fictitious
partide than the motion of 8, we shall do so freely in the remainder
of this article, which is concerned with the processes by which the
partide escapes from the well (that is, the junction makes a
transition from the zero-voltage state to the nonzero-voltage state).
To aid this discussion, in Fig. 2, c and d, we show a single potential
well. In the experiments to be described I is very close to Io and the
potential is of the form AB2 - BB3 (A, B > 0). In this approxima-
tion the barrier height is (4)

AU = [2(2)1/2Io4Do/3ir](I - I/1o)3/2 (4)
The damping of the oscillations by the resistance R (assumed to be
linear) is represented by

Q=wpRC (5)
In this classical description, the particle can escape from the well

as a result of thermal activation: the fluctuating thermal energy of
the particle eventually exceeds AU and the particle escapes over the
top ofthe barrier. The escape rate for thermal activation is given by
the Kramers' result (5)

Ft(T) = at(wp/2'n)exp(-AU/kBT) (6)

where the prefactor at is of order unity (6). The thermal energy of
the particle arises from the noise current IN(t).

In thermal activation, the system is entirely classical and is
described by a dassical equation of motion representing a point
partide with a continuous range of energy (Fig. 2c). The phase
difference 8 is a classical variable. Ifwe lower the temperature, Eq. 1
is no longer valid since the dynamics of the particle must be
described quantum mechanically. The crossover from the dassical to
the quantum mechanical description occurs at a temperature (7)
T, = hW/27rkB (for Q >> 1). Below this temperature, the phase
difference 8 must be represented by a quantum mechanical operator,
rather than treated as a dassical variable. The position ofthe particle
is now described by a wave packet, *(b), and the energy of the
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Aumentando I até perto I0, pode-se medir o valor de I quando há “escape” 
do poço (aparece uma voltagem no circuito): taxa de escape do poço

Fig. 4. T,,, versus T at
n(wp/2ffr') = 11 for the high
and low values of Io with ar-
rows indicating Tcr (solid and
open cirdes and arrows). The * Quantum junction"
vertical bar labeled MQT is E 0=9.489 pA
the prediction for Io = 9.489

E
100

RA. The line is the thermal v
prediction T1,, = 0.95T.
Horizntal error bars are a MQT "Classcal junction".
combination of systematic ± ow 1.383 gIA
and random errors in the tem-
perature scale; vertical error 1010 , ...
bars indicate primarily sys-
tematic uncertainties in the T(mK)
junction parameters. For darity, error bars for T have been shown for the
"dassical junction" only; identical errors apply to the "quantum junction."

neighbors by an oxide layer, the effective surface area ofthe copper is
enormous, producing substantial skin effect losses. The chain of
filters provided an overall attenuation ofmore than 200 dB over the
frequency range from 0.1 to 12 GHz. The last stage offiltering was
engineered with particular care since it imposed the damping of the
junction and hence determined Q. The junction was mounted as
close as possible to the end ofthe filter to ensure that the impedance
discontinuity between the junction and the line occurred in a
distance small compared with the wavelength at the plasma frequen-
cy. Thus, the impedance attached to the junction behaved approxi-
mately as a parallel combination of a resistor and a capacitor.
To ascertain the escape rate r we applied a current ramp (Fig. 3)

to the junction, and measured the value of current at which the
appearance of a voltage signified the escape of the partide from the
well. This value was digitized and transmitted to a computer outside
the screened room surrounding the refrigerator by an optical fiber
link. This measurement was repeated a large number of times,
typically 105. Since the escape process is stochastic, one obtains a
histogram representing the escape probability versus bias current.
From this distribution it is straightforward (4) to derive the escape
rate as a function of current, r(I).

Determination of Junction Parameters in the
Classical Regime
We now discuss the measurement of the parameters Io, C, and R

in the classical regime. We determined the parameters wp and Q
using a technique based on a phenomenon we called resonant
activation (27). The phenomenon is of interest in its own right in
that it describes the escape of a Brownian particle from a potential
well under the influence of a weak, sinusoidal force. Resonant
activation involves the enhancement of the escape rate by a micro-
wave current applied to the junction. When the microwave frequen-
cy is in the vicinity of wp, the particle is raised to a state of higher
energy, and its probability of activation over the barrier is increased.
The enhancement in the escape rate is manifested as an asymmemunc
peak that falls relatively rapidly on the high frequency side and has a
long tail on the low frequency side. The asymmetry is a consequence
ofthe anharmonicity ofthe potential well. With the aid ofnumerical
simulations (27), we can determine wp(I) and Q(I) from this
resonance.
To determine Io we measured r(O) in the classical regime in the

absence ofmicrowaves. As is evident from Eqs. 4 and 6 a plot ofthe
experimentally determined quantity {en[wp(I)/2irr(I)]}J versus I
should yield a straight line with slope scaling as T` that intersects
the current axis very dose to Io. After correcting for the departure of
at from unity (6) and for the approximation made in Eq. 4, we find
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that the values of Io obtained in the temperature range 50 to 800
mK are in very good agreement. We also find good agreement
between the temperatures inferred from the slope of the data and
our thermometers.
Given Io and wp(I) we can infer C using Eq. 3 and hence R from

Eq. 5. The values ofIo, C, and R, detenmined from purely dassical
experiments, are summarized in Table 1. The error in Io is the
standard deviation arising from statistical uncertainties. The quoted
errors in C andR, which arise from the fact that these quantities vary
with bias current and thus with frequency, are a measure of the
departure of the junction and its leads from the simple lumped-
circuit model shown in Fig. 1. The fractional error in C is small
because the self-capacitance ofthe junction was chosen to be as large
as possible to minimiize the effects of the leads. The fractional error
in R is large, but in this particular experiment we wished to
demonstrate only that Q was large enough for the effect of
dissipation on Fq to be negligible. We note that the measured value
of R is at least one order of magnitude less than the junction
resistance determined at low voltages from the static I-V characteris-
tic, indicating that the dissipation is almost completely determined
by the bias circuitry.

Macroscopic Quantum Tunneling
We have found it convenient to express our escape rates in both

dassical and quantum regimes in terms of an escape temperature
T.. defined through the relation

F = (wp/27r)exp(- AU/kBTesc) (8)

In the classical regime Te,, is very nearly equal to T with a small
correction due to the departure of at from unity. In the quantum
regime TeS takes a temperature-independent value that can be
calculated exactly by comparing Eqs. 7 and 8. All of the parameters
entering Tesc are measured experimentally.
We have made extensive measurements of F(T) as a function of

bias current over the temperature range from 19 to 800 mK. The
derived values of Tesc are plotted versus T in Fig. 4. Above about
100 mK, Tesc follows the thermal prediction rather accurately. At
lower temperatures Tesc flattens off to a temperature-independent
value of 37.4 ± 4 mK, which is in good agreement with the
Caldeira-Leggett T = 0 prediction of 36.0 + 1.4 mK, with no
adjustable parameters. The error in the experimental value is due
primarily to the uncertainty in Io; the error in the predicted value is
due primarily to the uncertainty in C. The errors indude possible
systematic errors in the estimates of Io and C, respectively. These
values of Tesc imply that the measured value of F(O) is within a
factor of 2 of the predicted value. We note that the contribution of
the damping to the predicted value ofTsc is -1.5 mK, so that given

Table 1. Measured parameters for a shunted and unshunted Josephson
tunnel junction, with experimental (Te,,) and predicted (TPh) escape
temperatures at T = 0 extrapolated from results at higher temperatures. The
predicted values of TP for Q = Xo are also included for comparison.

Quantity Unshunted junction Shunted junction

Io (pA) 9.489 ± 0.007 24.873 ± 0.004
C (pF) 6.35 ± 0.4 4.28 ± 0.34
R (ohms) 190 ± 100 9.3 ± 0.1
Q 30 ± 15 1.77 ± 0.07
Tes, (mK) 37.4 ± 4.0 44.4 ± 1.7
TPSC (mK) 36.0 ± 1.4 42.5 ± 2.1
TP(Q=) 37.5 ± 1.4 69 + 3
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J. Clarke et al., Science 239, 992 (1988)

Em “altas” temperaturas, a voltagem escapa por 
flutuação térmica: o “ângulo” ganha energia e 
passa por cima da barreira

Mas em baixas temperaturas, isso não tem 
como acontecer. O “ângulo” tunela através da 
barreira: tunelamento macroscópico.tunelamento



Balança de Kibble (ou Watt)
A força gravitacional sobre uma massa é contrabalançada 
por uma força de origem elétrica/magnética.
Padrão Josephson de voltagem é usado para alta precisão.

Balança de Kibble Nist-4

• Sabendo-se h, pode-se medir a massa com grande precisão.
• Ou pode-se definir h e usar como padrão de massa!

h = 6,62607015 x 10-34 J.s
20 de maio de 2019
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